
It’s Not Just For Prototyping
Like most products of its genre,
Delphi gives you a simple, produc-
tive point-and-click interface to
program creation. Unlike with
some products, though, your appli-
cation doesn’t have the silhouette
of a cow nor the speed of a sloth.
Delphi combines the advantages of
visual development with the
performance of a true compiler.

Borland didn’t cook up the
Delphi compiler out of the blue,
though, it’s an improved version of
the compiler in Borland Pascal 7.
So, although Delphi is a new prod-
uct, it’s an evolution of one of the
oldest and most trusted PC compil-
ers.

The code generated when you
compile a program in Delphi is on
a par in terms of speed with that
generated by a C or C++ compiler.
In short, Delphi isn’t a prototyping
or “front-end” tool, but an all-round
tool. Using it only for prototyping
would be like buying a Ferrari and
never pulling it out of your drive!

It’s Pascal
If you’re new to Delphi, you should
find it easy moving up to Object
Pascal. It’s a sort of happy medium
of languages, so whether you pre-
fer the structure and verbosity of
Basic or the flexibility and power of
C++, you’ll soon feel at home.

One language feature that can
take some getting used to is Object
Pascal’s strongly typed nature.
When you call a procedure, the
compiler will make sure that you
pass correct types, array sizes and
pointers. If you come from a C/C++
background, this will probably
annoy you at first, but I’ll bet you
will soon appreciate the number of
bugs it prevents from entering

your code. After all, wouldn’t the
ideal be to have the compiler find
all your bugs? Strict type-checking
is a step in that direction.

If you’re moving to Delphi from
Borland Pascal, nearly 100% of
your code will compile without
problem in Delphi. I’ve found the
best approach to porting an Object
Windows Library (OWL) applica-
tion to Delphi is to redo the User
Interface portions in Delphi’s IDE,
and hook the new UI into your
application’s existing back-end.

Visual Component Library
Visual Component Library, or VCL,
is Delphi’s object-oriented frame-
work. In this rich library, you’ll find
classes for Windows objects such
as windows, buttons, etc, and
you’ll also find classes for custom
controls such as gauge, timer and
multimedia player, along with non-
visual objects such as string lists,
database tables, and streams.

Each VCL class usually has a set
of properties – such as color, size,
position, caption – that can be
modified in the Delphi IDE or in
your code, and a collection of
events – such as a mouse click,
keypress, or component activation
– for which you can specify some
additional behavior. You’ll spend
most of your time in the Delphi IDE
interacting with components’
properties and events.

VCL is also remarkably platform-
independent. VCL encapsulates
even low-level Windows concepts
such as Device Contexts, bitmaps,
and timers. It is for this reason that
the code you write in 16-bit Delphi
will recompile with little or no
changes in 32-bit Delphi when it is
released. It’s best to keep with VCL
as much as possible to give your

code maximum portability. You’ll
be surprised how much you can do
without calling the Windows API.

Message Handling
Although VCL’s events account for
most of your needs, directly han-
dling Windows messages is a piece
of cake with Delphi’s new message
keyword. Simply create a method
that takes one parameter of type
TMessage (or other message re-
cord), and use the magic word.
Let’s say, for example, you want to
write a handler for the wm_Paint
message. The code would look like:

procedure WMPaint(
 var M: TWMPaint);
 message wm_Paint;

TWMPaint is a record type based on
a TMessage whose fields are defined
specifically for a wm_Paint message.
Delphi defines a record type like
this for every Windows message.
The record type is always the same
as the message name with a “T” in
front and without the underscore.

Windows At Your Fingertips
Unlike some similar products,
Delphi offers you the flexibility to
easily call any Windows API proce-
dure. Actually, Delphi doesn’t just
support this feature, but it makes it
a trivial task: you just call the API
procedure as if it were a procedure
defined in your program.

Delphi also allows you to call
procedures out of any other DLL,
no matter what language it’s
written in. Although Windows DLLs
generally use the Pascal calling
convention for parameter passing,
Delphi supports the C calling
convention too: just use cdecl on
your function declaration.

Exception Handling And
Runtime Type Information
You can handle error conditions in
your Delphi code using C++-like
Exception handling. Exception
handling enables you to gracefully

The Delphi Idiom
by Steve Teixeira

Now you have Delphi in your hot little hands you can understand what
the big deal has been about for the past several months! Delphi can

handle practically any application development task you throw at it –
and handle it faster and more elegantly than most any other tool. But
you probably already know that or you wouldn’t be here, right? I’m here
to tell you what you need to know to be a Delphi programmer.

8 The Delphi Magazine Issue 1

handle specific or general error
conditions by enclosing potentially
dangerous parts of your code in a
Try..Except or Try..Finally block.
The general structure of an excep-
tion handling block looks like this:
try
 {some stuff }
except
 {if an exception occurs... }
 on ESomeException do
 Something;
 {Handle the exception }
end;

Exceptions provide a significant
advantage over general error pro-
cedures in that protection can be
placed where it’s needed in your
code. Instead of trying to handle a
whole variety of possible error
conditions in one place, you can
tailor Try blocks to your needs. It’s
also built into the Win32 API, so
you’ll need to get used to it!

Runtime Type Information
(RTTI) is the ability to obtain
information on class instances
while your program is running.
RTTI is perhaps the single most
important feature in Object Pascal.
In VCL, most classes are passed
between functions and procedures

as the TObject base class (from
which all classes are derived),
which satisfies the compiler’s type-
checking, and RTTI is used inside
functions and procedures to
determine the type of and typecast
these classes.

Client/Server
Delphi comes with the Borland
Database Engine, a high-perform-
ance database-access layer that
transparently connects you to dif-
ferent data sources: Paradox,
dBASE, ODBC, or servers like
Oracle, Interbase, Sybase, and
Informix. The buzzword here is
scaleability: you can start off with
Paradox or dBASE tables and then
transparently move to Oracle or
Sybase with very little change in
your application. Back-end inde-
pendence means productivity, and
it is the wave of the future.

Component Design
Delphi was written in Delphi.
Delphi components are written in
Delphi. That’s not to say that
Delphi is xenophobic – Delphi also
allows you to use VBX controls and
other Windows custom controls.

Simply stated, Delphi does it all,
and because of that, you can do it
all. There’s no line between the ap-
plication developer and the com-
ponent writer. All components are
extensible Object Pascal classes,
so you can crank out a custom
component any time you need to.

Power
Because Delphi is a true compiler,
you have no limits. Need to write a
DLL? No problem, it’s hardly any
different to writing a regular unit.
Callback functions? Not a problem
either. Just tag that procedure with
the export directive and you’re on
your way. How about inline assem-
bly language? Sure, Delphi’s Built-
in Assembler makes it a snap.

Whether you want to write appli-
cations, controls, or database
front-ends, Delphi is your tool. Now
that you know the score, what are
you waiting for? Go forth and hack.

Steve Teixeira is a Senior Technical
Support Engineer for Delphi at
Borland International. He can be
reached via the internet at
steixeira@wpo.borland.com or via
CompuServe at 74431,263

	It's Not Just For Prototyping
	It's Pascal
	Visual Component Library
	Message Handling
	Windows at your Fingertips
	Exception Handling and Runtime Type Information
	Client/Server
	Component Design
	Power

